Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bianhong Meng,^a Shuping Huang^b and Fei Gao^a*

^aInstitute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China

Correspondence e-mail: feigao@sxu.edu.cn

Key indicators

Single-crystal X-ray study T = 183 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.031 wR factor = 0.082 Data-to-parameter ratio = 11.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

metal-organic papers

Redetermination of $[HCu_2\{(CH_3HXTA)(H)\}-(H_2O)_2]\cdot 4H_2O$ $[CH_3HXTA = N,N'-(2-hydroxy-5-methyl-1,3-xylylene)bis(N-carboxymethyl-glycine)]$

The structure of the title compound, { μ -2-[N,N-bis(carboxylatomethyl)aminomethyl]-6-[N-(carboxylatomethyl)-N-(carboxymethyl)aminomethyl]-6-methylphenolato}dicopper(II) tetrahydrate, [Cu₂(C₁₇H₁₇N₂O₉)(H₂O)₂]·4H₂O, which has been published previously [Holz, Brink, Gobena & O'Connor (1994). *Inorg. Chem.* **33**, 6086–6092], has been redetermined. The H atom missing in the earlier study is shown to be associated with a carboxyl group.

Comment

The crystal structure of the title compound, (I) (Fig. 1), has been published previously (Holz *et al.*, 1994). The present study, also using data collected at low temperature, confirms the earlier structure with improved precision [*e.g.* the standard uncertainties of Holz *et al.* (1994) for the Cu–N bonds are 0.004 Å, compared with 0.002 Å here]. Earlier work on dinucleating ligands and their potential applications as models for dinuclear metallo-biosites has been summarized by Sorrell (1989).

In the previous study of (I), one H atom was not located, leading to charge imbalance. Here, the additional H atom is attached to the carboxyl atom O5. It is interesting that the C10–O5 distance is 1.301 (3) Å, while the C–O distances for the three unprotonated carboxyl O atoms are in the range 1.223 (3)–1.249 (3) Å. The near-linear hydrogen bond formed by O5–H5···O15ⁱ (see Table 2 for symmetry code) is further evidence of the correctness of this formulation.

As shown in Table 2. and illustrated in Fig. 2, a number of intra- and intermolecular hydrogen bonds stabilize the crystal structure. These hydrogen bonds are formed mainly between coordinated water molecule (H-atom donors) and carbonyl O atoms from carboxyl groups (H-atom acceptors) or the uncoordinated water molecules (as H-atom donors or acceptors).

Experimental

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China, and were used Received 7 May 2004 Accepted 11 May 2004 Online 15 May 2004

Figure 1

A view of the molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2

Packing diagram of (I), viewed along the b direction. Hydrogen bonds are indicated by dashed lines.

without further purification. The ligand CH_3HXTA was synthesized according to a published procedure (Branum *et al.*, 2001). CuCl₂·2H₂O (0.3410 g, 2 mmol) and Na₄(HXTA) (0.486 g, 1 mmol) were dissolved in water (5 ml) and mixed with stirring at 323 K for 3 h. The resulting dark-green solution was filtered and the filtrate was left to stand at room temperature. Dark-green crystals of (I) appeared after a week as a result of slow evaporation of the aqueous solvent.

Crystal data

$[Cu_2(C_{17}H_{17}N_2O_9)(H_2O)_2]\cdot 4H_2O$	$D_x = 1.741 \text{ Mg m}^{-3}$
$M_r = 629.51$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 5375
a = 15.0895 (18) Å	reflections
b = 10.8217 (13) Å	$\theta = 2.3-26.9^{\circ}$
c = 15.2048 (18) Å	$\mu = 1.85 \text{ mm}^{-1}$
$\beta = 104.705 \ (2)^{\circ}$	T = 183 (2) K
$V = 2401.5 (5) \text{ Å}^3$	Plate, dark green
Z = 4	$0.40 \times 0.40 \times 0.20$ mm

Data collection

Bruker SMART 1K CCD area-	4221 independent reflections
detector diffractometer	3623 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.024$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Bruker, 2000)	$h = -13 \rightarrow 17$
$T_{\rm min} = 0.509, \ T_{\rm max} = 0.688$	$k = -11 \rightarrow 12$
9615 measured reflections	$l = -18 \rightarrow 16$
Refinement	
Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.031$	independent and constrained
$wR(F^2) = 0.082$	refinement
S = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2]$
4221 reflections	where $P = (F^2 + 2F^2)/3$

Table 1

378 parameters

Selected geometric parameters (Å, °).

Cu1-O1	1.9056 (17)	O1-Cu2	2.2288 (17)
Cu1-O2	1.9457 (17)	Cu2-O11	1.947 (2)
Cu1-O6	1.957 (2)	Cu2-O7	1.9624 (18)
Cu1-N1	2.042 (2)	Cu2-O9	1.9866 (18)
Cu1-O4	2.298 (2)	Cu2-N2	2.001 (2)
Cu1···Cu2	3.7194 (6)		
Cu1-O1-Cu2	128.05 (8)		

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.70 \text{ e \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H5···O15 ⁱ	0.82 (4)	1.72 (4)	2.533 (3)	175 (5)
$O6-H6A\cdotsO8^{i}$	0.76 (4)	2.00 (4)	2.734 (3)	163 (4)
$O6-H6B\cdots O9$	0.81(3)	1.91 (3)	2.704 (3)	167 (3)
O11−H11 <i>C</i> ···O3 ⁱⁱ	0.75 (4)	1.96 (4)	2.703 (3)	172 (4)
$O11 - H11D \cdots O12$	0.86 (3)	1.80 (3)	2.645 (3)	167 (3)
$O12-H12A\cdots O14^{iii}$	0.80(4)	2.04 (4)	2.811 (4)	163 (4)
$O12-H12B\cdots O8^{iv}$	0.90 (4)	1.89 (4)	2.787 (3)	173 (4)
$O13-H13C\cdots O3^{v}$	0.73 (4)	2.20 (4)	2.911 (4)	166 (4)
O13−H13D···O12	0.75(3)	2.43 (3)	3.011 (4)	135 (4)
O14−H14C···O15	0.79 (4)	2.16 (4)	2.896 (4)	156 (4)
$O14-H14D\cdots O8^{vi}$	0.67(5)	2.21 (5)	2.807 (3)	149 (5)
$O15-H15A\cdots O10^{vii}$	0.77(3)	1.82 (3)	2.574 (3)	165 (3)
$O15-H15B\cdots O4^{viii}$	0.94 (4)	1.87 (4)	2.790 (3)	165 (3)

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) -x, -y, -z; (iii) $x - \frac{1}{2}, \frac{2}{2} - y, z - \frac{1}{2}$; (iv) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (v) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$; (vi) x, 1 + y, z; (vii) $\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$; (viii) -x, 1 - y, 1 - z.

H atoms attached to C atoms were placed in geometrically idealized positions, with $Csp^3 - H = 0.96$ Å (for methyl), $Csp^3 - H = 0.97$ Å (for methylene) and $Csp^2 - H = 0.93$ Å, and constrained to ride on their parent atoms, with $U_{\rm iso}(H) = 1.5U_{\rm eq}(C)$ (for methyl) and $U_{\rm iso}(H) = 1.2U_{\rm eq}(C)$ (for others). H atoms attached to O atoms were located in difference Fourier maps and refined with a common $U_{\rm iso}$ value. The O-H distances are in the range 0.67 (5)–0.94 (4) Å.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 2000); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 2000); molecular graphics: *SHELXTL/PC* (Sheldrick, 1999); software used to prepare material for publication: *SHELXTL/PC*.

The authors thank Professor Miaoli Zhu for invaluable discussions and suggestions. This work was supported finan-

cially by the Provincial Natural Foundation of Shanxi and the Overseas Returned Scholar Foundation of Shanxi Province (for FG).

References

- Branum, M. E., Tipton, A. K., Zhu, S. & Que, L. Jr (2001). J. Am. Chem. Soc. 123, 1898–1904.
- Bruker (2000). *SMART* (Version 5.0), *SAINT* (Version 6.02) and *SADABS* (Version 6.2). Bruker AXS Inc., Madison, Wisconsin, USA.
- Holz, R. C., Brink, J. M., Gobena, F. T. & O'Connor, C. J. (1994). *Inorg. Chem.* **33**, 6086–6092.
- Sheldrick, G. M. (1999). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2000). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sorrell, T. N. (1989). Tetrahedron, 45, 3-68.